Padstacks - Through Hole and Connector Libraries

- 1. See Padstacks.pdf Excel spreadsheet for Plated & Non-plated sizes
- 2. Padstack Features:
 - a. Full padstacks include Solder Mask and Assembly data
 - b. Hole size is 0.3mm larger than lead size
 - c. All hole sizes are in increments of 0.05mm
 - d. Pad sizes are gradually scaled up to establish correct current carrying capability
 - e. Split/Mixed Anti-pad & Custom Thermals are defined on "Inner Layers"
- 3. Non-plated holes have a keepout on All Layers 0.6mm greater than hole size
- 4. Minimum of 0.30mm space between pads

Padstacks - Surface Mount SML, SMN & SMM and SMT Connector Libraries

- 1. See IPC-SM-782 for Toe, Heel and side fillet data
- 2. Padstack Features:
 - a. Full padstacks include Solder Mask, Paste Mask and Assembly data
 - b. Solder Mask size is 1:1 scale of pad size
 - c. Paste Mask size is 1:1 scale of pad size
 - d. Inner and Bottom Layers are Zero Width and Round Shape
- 3. Non-plated holes have a keepout on All Layers 0.6mm greater than hole size
- 4. Hole Size 0 (Zero)

Silkscreen Outline

- 1. Layer_1
- 2. 0.2mm Width
- 3. Tolerance: 0.3mm away from exposed copper
- 4. See **Definitions_Index.Doc** for all Table of Contents to all the Library Definitions

Silkscreen "Free" Text (Not Ref Des)

- 1. Layer_26
- 2. Size: 1.5mm Height X 0.15mm Width
- 3. Justification: Left / Center

Silkscreen Polarity Marking

- 1. Layer_1
- 2. IC polarity markings: 2D-Line Circle 0.6mm Width X 0.3mm Diameter (Overall Finished Size: 1.2mm)
- 3. IC polarity marking location: Placed 1mm X 1mm from silkscreen outline corner closest to pin 1
- 4. Diode polarity markings: 2D-Line Paths spaced 0.15mm apart. Overall Finished Size: 1mm
- 5. Diode location: Placed on the Anode side of the diode
- 6. Through Hole Capacitor polarity markings: 0.2mm wide 2D-Line crosshair. Size: 1.5mm X 1.5mm
- 7. Capacitor location: Inside the silkscreen outline near the upper left corner

Placement Courtyard (Used only on parts that have silkscreen outline inside the pins)

- 1. See IPC-SM-782_2002.doc for placement courtyard size and round-off data
- 2. Layer 20
- 3. Line Width 0.1mm
- 4. Shape: Closed Polygon
- 5. Use: To verify design rules for "Body to Body" clearance

Post Assembly Inspection Dots (Used whenever a component can be assembled backwards)

- 1. Used whenever a component can be assembled backward (Inverted)
- 2. Size: 0.25mm Line Width X 0.125mm Radius = Overall Size: 0.5mm
- 3. Location 1: Placed by Pin 1, inside placement courtyard as much as possible
- 4. Location 2: Placed 0.25mm minimum away from exposed copper, 0.3mm preferred
- 5. Location 3: Placed 0.2mm away from silkscreen outline when the silkscreen is outside the pins

6. Layers 1 & 27

Assembly Outline

- 1. Layer 27 (Assembly Top)
- 2. Line Width: 0.2mm
- 3. Shape: Closed Polygon

Land Pattern Origin

- 1. All SMT devices have centroid origins
- 2. Through Hole Connectors have Pin 1 origins
- 3. When the origin is not on a through hole pad, an origin crosshair should exist:
 - a. 0.1mm Line Width
 - b. Layer 20
 - c. Overall height & Width 1mm x 1mm
 - d. Shape: Path

Pick and Place Rotation

- 1. A Fuji pick and place manual was used as a reference to decide all land pattern rotation zero
- 2. When adding parts to a particular family, use same rotation (Orientation)

Silkscreen Reference Designator

- 1. Size: 1.5mm Height X 0.15mm Width
- 2. Justification: Left / Center
- 3. Right Reading: Orthogonal
- 4. Location: -1.3mm X 0.1mm
- 5. Layer_1

Assembly Reference Designator

- 1. Size: 2mm Height X 0.2mm Width
- 2. Justification: Center / Center
- 3. Right Reading: Orthogonal
- 4. Location: 0.1mm X 0.1mm (except through hole connectors, then check for Ref Des on pad)
- 5. Layer_27

Mounting Holes

- 1. Inch Sizes: #2, #4, #6 and #8
- 2. Metric Sizes: M2, M2.5, M3 and M3.5
- 3. Available with 8 via holes
- 4. Available Plated or Non-plated
- 5. See Padstacks.pdf

Local Fiducials

- 1. Placed on QFPS landpatterns when the Pin Pitch is below 0.635mm as the last two pins in the part
- 2. Layer 1 Pad Size 1mm Round
- 3. Assembly Top Pad Size 1mm Round
- 4. Solder Mask Pad Size 2mm Round
- 5. Drill Size 0 (Zero)

Geometry Height

- 1. PRO-E Height is defined in the Part-Type Attribute Geometry. Height
- 2. The Geometry. Height is defined in mm

Three Complexity Levels for SMT Landpatterns

- 1. Least Environment Use
- 2. Nominal Environment Use
- 3. Maximum Environment Use

© 2003 PCBstandards, Inc. 03/20/03

Naming Convention

1. See Landpattern Naming Convention.pdf

Library Documentation

1. See Library_Index.doc for the master Table of Contents. Folder: Metric Environment\Library Documentation

Metric System

- 1. All parts are built in metric units
- 2. Check for any coordinates that go beyond more than three places past the decimal point
- 3. All numbers on any feature (except Post Assembly Dots) should be divisible by 0.05mm

Part-Type "General" Tab

- 1. If a part is in a connector library, the Connector Box should be checked
- 2. Check for any coordinates that go beyond more than three places past the decimal point
- 3. ECO Registered Part

Part-Type "PCB Decals" Tab

1. Decal Name and Part-Type Name must match (except the MISC Library)

Part-Type "Attribute" Tab

- 1. Checked By
- 2. Checked Date (YY-MM-DD)
- 3. Created By
- 4. Created Date (YY-MM-DD)
- 5. Description
- 6. Geometry. Height (the value is always followed by "mm"
- 7. Manufactured By #1
- 8. Manufactured By #2
- 9. Part Number

Part-Type "Alphanumeric Pins" Tab

- 1. If one pin is assigned an Alphanumeric value that all pins are assigned an Alphanumeric value
- 2. Common Pin Names:

Diode: Anode = A

Cathode = C

Transistor: Base = B

Emitter = E Collector = C

Power Fet: Source = S

Gate = G Drain = D

© 2003 PCBstandards, Inc. 03/20/03

BGA Polarity Marking Detail:

Through Hole Diode Polarity Marking Detail:

© 2003 PCBstandards, Inc. 03/20/03